INTRODUCTION

Many health care practitioners are not familiar with glyconutritional supplements. These products contain mixtures of carbohydrates frequently deficient in the modern diet, including various monosaccharides and polysaccharides containing α- and β-glycosidic linkages. The composition of a patented glyconutritional supplement marketed by Mannatech™ Inc., Ambrotose® complex, is provided in Table 1.

Human case reports, retrospective and prospective studies, and clinical trials confirm that glyconutrients exert wide-ranging health benefits.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, 21,22,23 The means by which they exert their effects, however, are only partly understood. Postulated mechanisms have included:

1. they make up for dietary deficiencies in various sugars vital for synthesis of glycoconjugates (i.e., glycoproteins, glycolipids and proteoglycans);

2. some glyconutrients (e.g., mannose and fucose) have been found useful in the treatment of certain congenital disorders of glycosylation;

3. they may competitively inhibit the attachment of certain viruses and bacteria to cells.

Because scientific understanding of the complex functions of the GI tract is rapidly growing, we conducted an extensive literature search investigating the possibility that additional mechanisms involving the gut might explain the wide-ranging health benefits of glyconutritional supplements.

TABLE 1.
The composition of Ambrotose® complex

<table>
<thead>
<tr>
<th>INGREDIENT</th>
<th>CONSTITUENT CARBOHYDRATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabinogalactan (gum)</td>
<td>Arabinose, galactose</td>
</tr>
<tr>
<td>Rice starch</td>
<td>Glucose (as amylose or amylopectin)</td>
</tr>
<tr>
<td>Aloe vera gel extract</td>
<td>Acetylated polymannan</td>
</tr>
<tr>
<td>Gum ghattii</td>
<td>Arabinose, galactose, glucuronic acid, mannose, xylose</td>
</tr>
<tr>
<td>Glucosamine HCl</td>
<td>Glucosamine</td>
</tr>
<tr>
<td>Gum tragacanth</td>
<td>Arabinose, fucose, galactose, galacturonic acid, rhamnose, xylose</td>
</tr>
</tbody>
</table>
Figure 1. Three key areas of involvement of commensal bacteria in the metabolism and function of carbohydrates in the human gut

I
Commensal bacteria are present in the ileum that possess enzymes that can hydrolyze β-linkages in polysaccharides.

II
Polysaccharides of commensal bacteria play an integral role in the proper development and function of the immune system.

III
Short chain fatty acids produced from carbohydrates by commensal bacteria exert dramatic effects on the functions of the immune system.

Figure 2. Distribution of nonpathogenic microorganisms in healthy humans. Many of these bacteria possess enzymes that can cleave β-glycosidic linkages

MAJOR BACTERIA PRESENT

Esophagus

Pneumococci
Streptococcus
Veillonella
Helicobacter

Enterococcus
Lactobacillus

Bacteroides
Bifidobacteria
Clostridia
Enterobacteria
Enterococcus
Escherichia
Escherichia
Klebsiella
Lactobacillus
Peptococcus
Peptostreptococcus
Pasteur
Ruminococcus
Staphylococcus
Streptococcus

Stomach

Small Intestine

Ileum

Large Intestine

Anus

TABLE 2.
Some actions of butyrate, a short-chain fatty acid derived from the metabolism of carbohydrates by the actions of commensal bacteria.12

<table>
<thead>
<tr>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diminishes production of mediators of inflammation by macrophages</td>
</tr>
<tr>
<td>Suppresses secretion of IL-8</td>
</tr>
<tr>
<td>Inhibits VCAM-1 mediated leukocyte adhesion to endothelial cells</td>
</tr>
<tr>
<td>Inhibits expression of ICAM-1 and VCAM-1 in endothelial cells</td>
</tr>
<tr>
<td>Enhances activation of peroxisomal proliferator activated receptor (PPAR)</td>
</tr>
<tr>
<td>Suppresses production of tumor necrosis factor-alpha</td>
</tr>
</tbody>
</table>

III. Short-chain fatty acids produced from carbohydrates by commensal bacteria exert dramatic effects on the functions of the immune system.

Commensal bacteria can degrade various carbohydrates to short-chain fatty acids (SCFAs).30 The most important SCFA appears to be butyrate, a 3-carbon atom molecule, which has been found to exert a number of beneficial effects on the immune system (Table 2).

DISCUSSION

We have presented three examples of the complex relationships between carbohydrates, commensal bacteria and the gut:
(1) The presence of commensal bacteria in the ileum has not previously been widely recognized. The ability of enzymes from these microorganisms to hydrolyze β-glycosidic linkages in polysaccharides greatly expands the spectrum of free monosaccharides to which the gut is exposed. Apart from providing substrates for synthesis of glycoconjugates, some of the released monosaccharides (e.g., mannose, rhamnose and galacturonic acid) may have novel biologic effects. Beneficial effects of commensal bacteria on many other processes (e.g., synthesis of certain B vitamins and vitamin K, etc.) are well known.29

(2) Polysaccharides present in commensal bacteria play important roles in modulating the immune system, as evidenced by the work on PSac, referred to above.28 Indeed, it appears possible that exposure to polysaccharides in the gut after birth may be a major mechanism of initiating development of a normal immune system. It is noteworthy that a polymannose (derived from Aloe vera), a major constituent of Ambrotose® complex (Table 1), has been shown to exert a variety of immunomodulatory effects.24 Its actions may be similar to that of PSac.

(3) The production of the short-chain fatty acid butyrate from carbohydrates by commensal bacteria produces another type of molecule that also has important regulatory effects on the immune system.24 The ability of butyrate to enhance the activation of peroxisomal proliferator activated receptor (PPAR) may help prevent ulcerative colitis and inhibit tumor progression.31 By suppressing production of tumor necrosis factor-alpha, it may also benefit patients with rheumatoid arthritis.32

Two of the above examples directly involve the immune system. Further analysis of the interactions among carbohydrates, commensal bacteria, the gut and the immune system should be a fruitful area of research. This area also dovetails with the increasing interest in probiotics and prebiotics.

Our findings thus support the concept that the beneficial effects of glyconutrients are likely exerted by multiple mechanisms, many of which may involve the gut. Finally, we note that modern industrial societies have enjoyed a tremendous reduction in many infectious diseases of the gut. However, gastrointestinal and food allergies and inflammatory conditions of unexplained origin have increased dramatically.33 We believe that significant changes from our pre-agricultural ancestors in hygiene and nutrient intake – particularly that of carbohydrates and bacteria – have played a significant role in the development of these conditions.24

REFERENCES

